

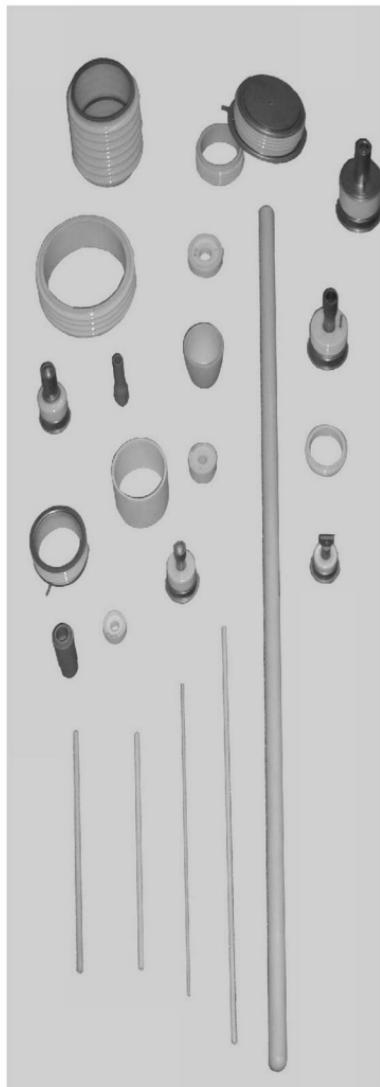
Advanced Ceramics

Tianjin Century Electronics Co., Ltd

Brief Introduction of the Company

Tianjin Century Electronics Co.,Ltd was registered in Tianjin Port Free Trade Zone as an independent corporation in August, 1997. It is a company specialized in exporting Chinese products, which mainly include power electronics devices. It is also a foreign trade company authorized by Chinese government, which is devoted in importing & exporting products & technology.

The earliest business can be traced to 1987, when the company discussed exporting ceramic housings, ceramic rings and Mo round discs used in controlled silicons with American IR company. For these years, there are many clients good at business in more than twenty countries and regions, and we always keep excellent cooperation relationship with world well known companies, such as IR, ABB, Eupec & Powerex, etc. At present, there are also more than ten agents for our company in Asia, Africa, Europe & America. Recently, our company is developing the export of technology & whole set equipments actively, and takes technology export as our main developing strategy.


Hope to establish wide and long-term business relationship with all friends, leading to the bright future!

First Class Products Service

First Class Technical Service

First Class Quality Credit

Catalogue

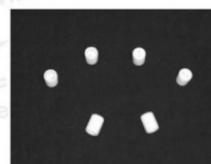
- 1 – 2 Alumina(Al_2O_3)**
- 3 Structure Parts of Alumina(Al_2O_3)**
- 4 Protection Pipe and Insulating Pipe of Alumina (Al_2O_3)**
- 5 Semiconductor Refrigerator Assemblies of Alumina(Al_2O_3)**
- 6 Direct Copper Bonded (DCB) Ceramic Substrates**
- 7 Aluminum Nitride(AlN)**
- 8 Zirconia(ZrO_2)**
- 9 Beryllia(BeO)**
- 10 Silicon Nitride (Si_3N_4)**
- 11 Silicon Carbide (SiC)**
- 12 Boron Nitride (BN)**
- 13 Zirconia Toughened Alumina(ZTA)**
- 14 Mullite , Steatite**
- 15 Cordierite**

Alumina (Al_2O_3)

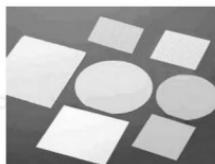
Features

- Lower Thermal Expansion Coefficient
- Lower Dielectric Constant and Loss
- Higher Flexural Strength

Applications


- Ceramic-metal Housings for Rectifier and Thyristor
- Ceramic Substrates for Power Semiconductor Device
- Thick Film and Thin Film
- Direct Copper Bonded
- Bolts, Nuts, Washers
- Rods, Tubes
- Plates, Discs
- Standoff Insulators

Characteristics of Material


Item	Unit	Value	Value
Alumina Content	%	93	96
Bulk density	g/cm ³	3.6	3.7
Water Absorption	%	0	0
Flexural Strength	MPa	>310	>310
Yong's Modules	GPa	290	330
Dielectric Constant (at 1MHz)		8.8	9.4
Dielectric Loss Angle (at 1MHz)	$\times 10^4$	6	4
Dielectric Strength	kV/mm	>15	>15
Thermal Expansion Coefficient	$\times 10^{-6}/\text{C}$	7.1	7.2
Thermal Conductivity (at 20°C)	W/m.K	22	27
Volume Resistivity (at 20°C)	$\Omega \text{ cm}$	$>10^{14}$	$>10^{14}$

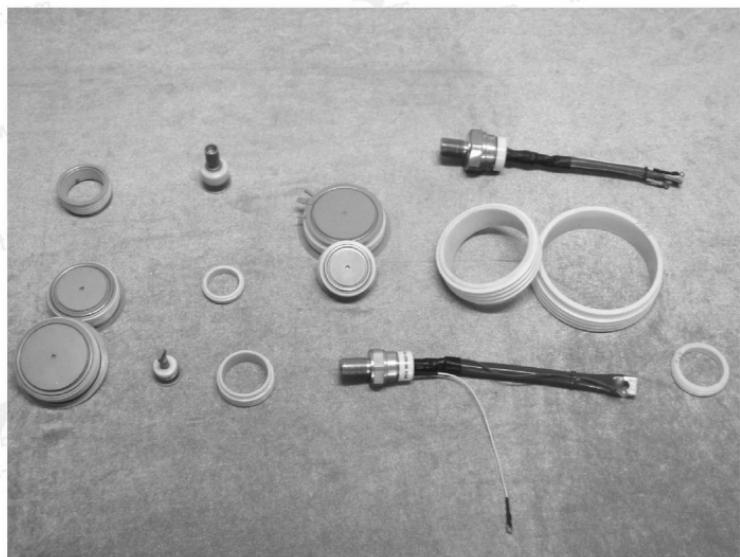
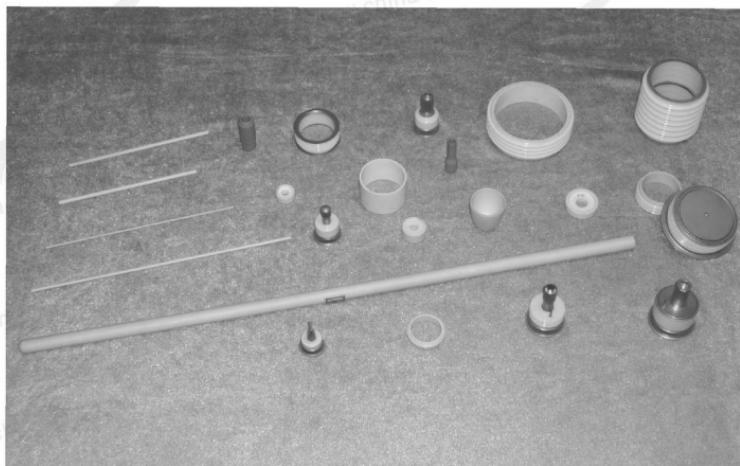
Bed knife

Small insulators

Substrates

Cast component

Spacers



Insulators

Nozzles

Insulating plates

Ceramic parts for power semiconductor devices

Structure Parts of Alumina (Al_2O_3)

Features

- Higher Mechanical Strength
- Higher Dielectric Strength

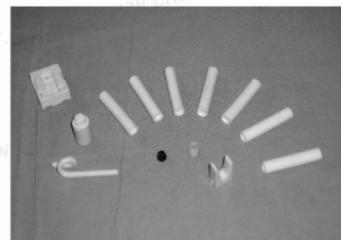
Applications

- Support Insulators for Electronic Instrument, Meter and Automobile
- Tubes
- Plates
- Various Parts

Characteristics of Material

Item		Unit	Value		
Alumina Content		%	MS-1 Sinterite	A-75 75 95	A-95 95
Bulk Density		g/cm ³	2.7	3.2	3.6
Bending Strength		MPa	>140	>200	>280
Dielectric Constant	at 1MHz 20°C		7.5	9	9~10
	at 1MHz 500°C		—	—	9~10
	at 10GHz 20°C		—	—	9~10
Dielectric Loss Angle	at 1MHz 20°C	×10 ⁴	8	10	4
	at 1MHz 500°C		—	—	30~40
	at 10GHz 20°C		—	—	10
Thermal Expansion Coefficient	at 20°C~100°C	×10 ⁶ /°C	8	6	—
	at 20°C~500°C		—	—	6.5~7.5
	at 20°C~800°C		—	—	6.5~8
Volume Resistivity	at 100°C	Ω cm	>10 ¹²	>10 ¹²	>10 ⁹
	at 300°C		—	—	>10 ⁹
	at 500°C		—	—	>10 ⁸
Dielectric Strength (at D.C.)		kV/mm	>20	>20	>18

Pipe fittings


Crucibles

Support insulators

Various insulating parts

Protection Pipe and Insulating Pipe of Alumina (Al_2O_3)

Features

- High Mechanical Strength
- High Thermal Conductivity
- High Spalling Resistance
- High Softening Temperature
- Excellent Insularity
- Etching Resistance

Application

- Temperature Measuring Meters
- Protection and Insulation for Thermocouples, Thermometers
- Furnace Tube for Resistance Furnaces, Heat Treatment Furnaces
- Chemical Analysis for Steel, Iron
- Various Insulating Parts for High Temperature Resistance and Etching Resistance

Structure Model

- Round, Oval
- Mono-hole, Double-hole, Multi-hole
- Threaded
- Rhombohedral

Characteristics of Material

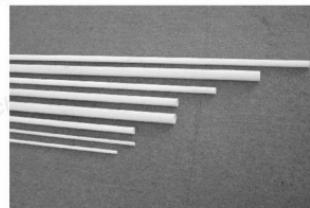
Item	Unit	Value	
		High Alumina	Corundum
Al_2O_3 Content	%	85	99~99.5
SiO_2 Content	%	12	0.2
Fe_2O_3 Content	%	0.2	0.05~0.1
Mohs Hardness		7	8~9
Bulk Density	g/cm ³	3.5~3.6 3.4~3.5 3.4~3.5	3.7~3.9 3.7~3.8 3.7~3.85
Water Absorption	%	<0.2	0.1~0.2
Bending Strength	MPa	180 140	200 150
Operating Temperature	°C	Long term 1450 Short term 1600	Long term 1600
Max. Operating Temperature	°C	1600	1800

Dimensions of Insulating Pipes of High Alumina and Corundum Ceramic

Unit: mm

Hole Nos	Value		
	O.D	I.D	Length
Mono-hole	1~15	0.5~10	5~1000
Double-hole	2~15	0.5~4	5~2000
Flat double-hole	3×5~7×12	0.5~5	5~200
Four-hole	4~15	0.5~4	5~2000

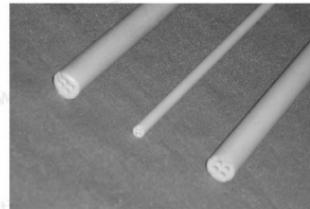
Insulating pipes of high alumina


Dimensions of Ceramic Protection Pipes for Thermocouples

Unit: mm

Item	Value							
	O.D	6	8	10	12	16	20	25
LD	4	6	7	8	12	15	19	

Length 100~2165


Products of other specifications can be produced according to customers' requirements.

Insulating pipes of corundum

Insulating pipes of corundum

Multi-holes protection pipes

Semiconductor Refrigerator Assemblies of Alumina (Al_2O_3)

Features

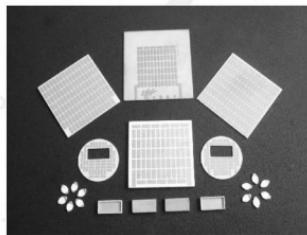
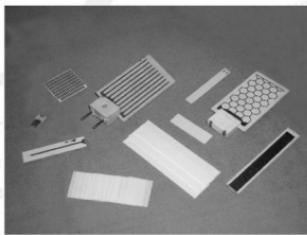
- Small Volume
- Light Weight
- Long Life
- High Reliability
- Heating and Refrigeration

Application

- Electron Communication
- Laboratory Devices
- Medical Instruments
- Fridges for Automobiles
- Drinkers

Specifications of Alumina (Al_2O_3) Substrate

Item	Unit	Value
Alumina Content	%	96
Dielectric Constant (at 25°C, 1MHz)		9~10
Dielectric Loss Angle (at 25°C, 1MHz)	$\times 10^4$	<4
Insulating Strength	kV/mm	>15
Volume Resistivity (at 25°C)	$\Omega \text{ cm}$	>10 ⁹
Thermal Expansion Coefficient (at 25~50°C)	$10^6 /^\circ\text{C}$	6.5~7.5
Bending Strength	MPa	>2800



Dimensions & Metallized Type of Alumina (Al_2O_3) Substrate

Type	L × b	h	Metallized Type
ZL-01	50×50	0.80	
ZL-02	50×50	1.00	Mo-Mn, Ni plated
ZL-03	40×40	0.68	Mo-W, Ni plated
ZL-04	40×40	0.80	Ag, Sn dipped
ZL-05	40×40	1.00	DCB, Sn dipped
ZL-06	39.5×39.5	1.00	
ZL-07	39.5×39.5	0.80	
ZL-08	39.5×39.5	0.68	
ZL-09	30×30	0.68	
ZL-10	30×30	0.80	
ZL-11	29.5×29.5	0.68	
ZL-12	29.5×29.5	0.80	

Dimension , electrode figure and metallized type can be produced according to customers' requirements.

Specifications of Semiconductor Refrigerator Assemblies (Disc Type)

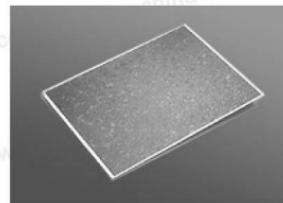
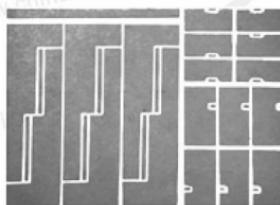
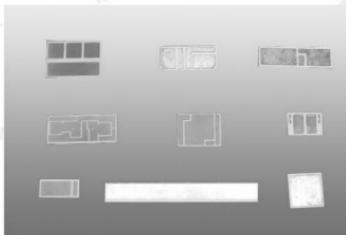
Type	Main Parameters				Dimensions			Weight
	I _{max} A	△T _{max} °C	V V	Q _{max} W	1 mm	b mm	h mm	
TEC1-01703	3.3	60	1.9	3.9	15	15	4.7	4.3
TEC1-12703	3.3	60	14.5	29.3	40	40	4.7	25.3
TEC1-01709	9.0	65	2.06	10.3	22	22	5.6	10.1
TEC1-04914	14	62	5.93	46.2	36	36	4.6	21
TES1-12703	3.0	62	15.4	25.7	30	30	3.6	12

Semiconductor refrigerator assemblies

Direct Copper Bonded (DCB) Ceramic Substrates

Features

- Fine Mechanical strength
- Fine Adhesion and Corrosion Resistant
- Excellent Electrical Insulation and Thermal Conductive Properties
- High Reliability
- Lower Thermal Expansion Coefficient
- Etchable to Various Graphs




Applications

- Power Semiconductor Modules
- Power Hybrids
- Power Control Circuits
- Solid-state Relays
- Semiconductor Refrigerators
- Electronic Devices for Automobile
- Intelligent Power Assemblies
- Solar Cell Board

Characteristics of Material

	Item	Unit	Value
Ceramic	Content	%	96Al ₂ O ₃
	Thickness	mm	0.25, 0.38, 0.5, 0.63(std.), 0.76, 1.0
	Dielectric Constant (at 25°C, 1MHz)		9.4
	Dielectric Loss Angle (at 25°C, 1MHz)	× 10 ⁴	3
	Dielectric Strength	kV/mm	>14
Copper layer	Thickness	mm	0.3
	Thermal Conductivity	W/m.K	385
DCB	Dimension (max.)	mm × mm	127 × 198
	Thermal Expansion Coefficient	10 ⁶ °C	7.4(25~200°C)
	Bounding Force	N/mm	>6
	Bending	μ m/mm	<150/50
	Operating Temperature (inert atmosphere)	°C	-55~+850
Plating			Au or Ni plated or bare Cu

Note: Dimension and etching graph of DCB substrate can be produced according to customers' requirements.

Various DCB ceramic substrates

Aluminum Nitride (AlN)

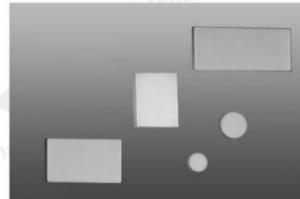
Features

- High Thermal Conductivity
- Thermal Expansion Coefficient Close to That of Si
- High Resistivity
- Low Dielectric Constant and Loss
- Inert to Almost All Molten Metals
- Excellent Mechanical Strength

Applications

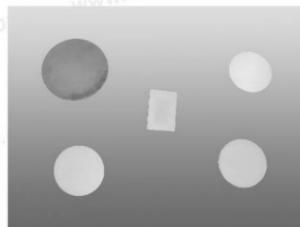
- Circuit Substrates for Semiconductor Module and IC
- Heat Sink Materials for Power Transistors, Thyristors, LDs and LEDs etc.
- Crucibles for Molten Metal and Preparing Single Crystals
- Window Material for Infrared ray and Radar

Characteristics of Material


Item	Unit	Value
Bulk Density	g/cm ³	3.24~3.3
Thermal Expansion Coefficient	10 ⁶ /°C	4.36 (at 20~400°C)
Modulus of Elasticity	GPa	310
Mohs Hardness		7~8
Fracture Toughness	MPam ^{0.5}	3.2~3.35
Vickers Hardness	GPa	12
Bending Strength	MPa	>325
Thermal Conductivity	W/m.K	170~228
Dielectric Constant (at 1MHz)		8.6
Dielectric Loss Angle(at 1MHz)	× 10 ⁴	5~10
Dielectric Strength	kV/mm	>15
Volume Resistivity	Ω cm	>3.6×10 ¹³

Metalized AlN Substrates

Item	Metallized Method					
Material	Pd-Ag	W-Mo	Mo-Mn	Pt-Ag	Ti/Cu/Ni/Au	Ta _x N/Ni
Feature	Thick film	Thick film	Thick film	Thick film	Thin film	Thin film


Crucible

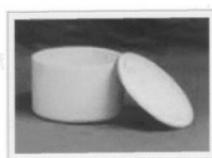
Window materials for infrared and radar applications

Balls and parts

Plates, discs

Zirconia (ZrO_2)

Features

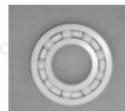

- High Density and Toughness
- Super Hardness
- Strong Wear and Corrosion Resistant
- Prevention of Contamination
- High Temperature Proof
- Acid and Alkaline Resistance

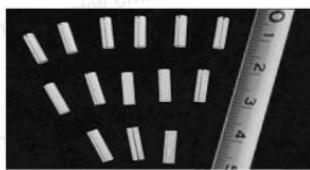
Applications

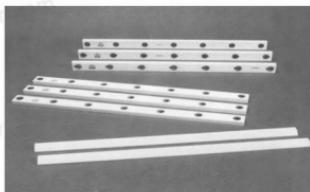
- Ball Valve ,Ball Bearing
- Bed Knife ,Razor Back Knife
- Crucible
- Ferrule and Sleeve for Optic Fiber Communication
- Ring ,Plate ,Pipe ,Box
- Friction Disc for Textile Machines
- Oil Valve

Characteristics of Material

Item	Unit	Value
Bulk Density	g/cm ³	6.0
Hardness	HRA	87
Thermal Expansion Coefficient	10 ⁻⁶ /°C	9.6 (at 20~400°C)
Modulus of Elasticity	GPa	200~500
Fracture Toughness	MPa m ^{1/2}	10
Bending Strength	MPa	>1150
Thermal Conductivity	W/m.K	2.5

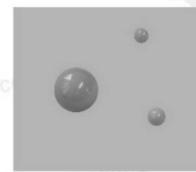

Crucible


Friction disc


Oil valve

Bearing

Ferrule and sleeve for optic fiber


Bed knife

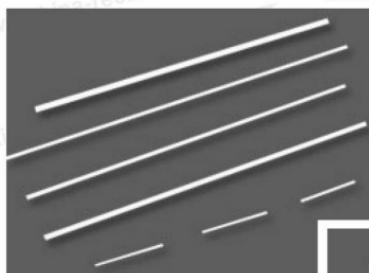
Fruit knife

Sleeve

Ball

Beryllia (BeO)

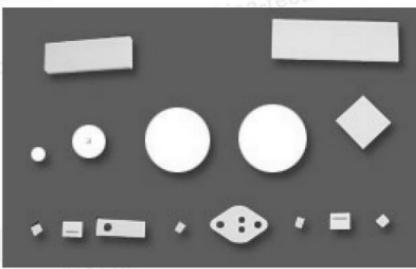
Features


- High Thermal Conductivity
- Low Dielectric Constant
- Low Dielectric Loss

Applications

- Heat Emission for Power Semiconductor Devices and IC
- Tubes and Rods
- Bars, Plate and Blocks

Characteristics of Material


Item	Unit	Value
Bulk Density	g/cm ³	2.9
Mohs Hardness		8
Thermal Expansion Coefficient	10 ⁻⁷ °C	7~8.5
Modulus of Elasticity	GPa	345
Flexural Strength	MPa	205
Tensile Strength	MPa	125
Compressive Strength	MPa	1550
Dielectric Constant (at 1MHz)		6.7
Dielectric Loss Angle (at 1 MHz)	×10 ⁴	5
Dielectric Strength	kV/mm	10~14
Thermal Conductivity (at 25°C)	W/mK	250
Volume Resistivity (at 25°C)	Ω cm	>10 ¹⁴

Pipes, rods

Bars,plates,blocks

Plats, discs

Silicon Nitride (Si_3N_4)

Features

- More Light
- Super Hardness
- Low Thermal Expansion Coefficient
- High Mechanical Strength and Fracture Toughness
- Resistant to Deformation at Elevated Temperature

Applications

- Valves, Pistons for Gas Turbines
- Parts for Diesel Engines
- Cutting Tools for Processing Gray Cast Iron, Ductile cast Iron, Half Steel and Half Iron, High Manganese Steel, Nickel Base Alloy, Titanium Base Alloy, Silicon-chromium Base Alloy, Carbon Steel and Other Non-ferrous Metals
- Bearings

Characteristics of Material

Item	Unit	Value
Bulk Density	g/cm ³	3.2
Hardness	HRA	93~94
Thermal Expansion Coefficient	10 ⁷ °C	2.8~3 (at 0~1400°C)
Fracture Toughness	MPa ^{1/2}	6~8
Bending Strength	MPa	900
Thermal Conductivity	W/m.K	10~45
Dielectric Strength	kV/mm	>10
Volume Resistivity	Ω cm	>10 ¹⁴

Parts for diesel engines

Engine parts for gas turbines

Ferrules

Balls and bearings

Balls

Pipe, cutting knife

Silicon Carbide (SiC)

Features

- High Hardness
- High Wear Resistance
- Good Self-greasing Effect
- High Thermal Conductance
- Low Thermal Expansion Coefficient
- High Mechanical Strength at High Temperature
- Strong Wear and Corrosion Resistance

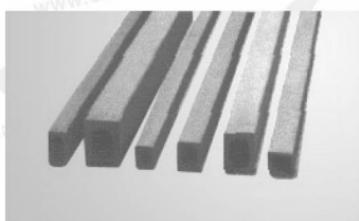
Applications

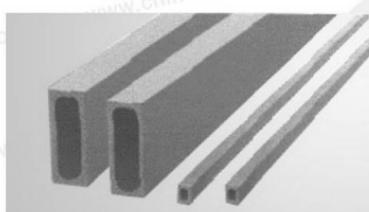
- Mechanical Seal
- Structure Element

Characteristics of Material

Item	Unit	Value
Bulk Density	g/cm ³	3.2
Mohs Hardness		9
Thermal Expansion Coefficient	10 ⁻⁶ /°C	4.5 (at 20~400°C)
Fracture Roughness	MPa ^{1/2}	4~5
Bending Strength	MPa	>440
Thermal Conductivity	W/m.K	>270

Covers of spray gun for the kiln


Ferrules


Pipe for the kiln

Mechanical seal

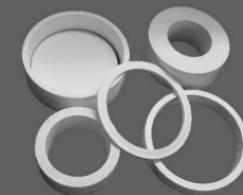
Square pipe for the kiln

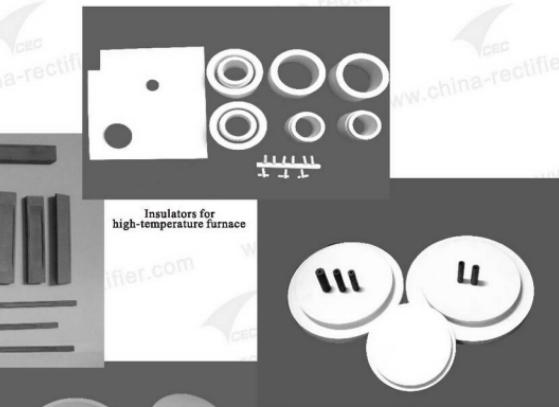
Boron Nitride (BN)

Features

- High Thermal Conductance
- Low Thermal Expansion Coefficient
- Strong Wear and Corrosion Resistance
- High Temperature Proof
- Excellent Electrical Properties
- Low Friction Coefficient
- Ease Machining

Characteristics of Material


Item	Unit	Value
Bulk Density	g/cm ³	1.9~2.0
Mohs Hardness		1
Thermal Expansion Coefficient	10 ⁻⁶ /°C	2.95~3 (at 0~1400°C)
Bending Strength	MPa	44
Dielectric Constant (at 1MHz)		4
Dielectric Loss Angle (at 1 MHz)	× 10 ⁴	2~6
Thermal Conductivity	W/m.K	20~60
Breakdown Voltage	kV/mm	20~30
Volume Resistivity	Ω cm	>10 ¹⁴


Evaporation boats

Crucibles

Ferrules

Insulators for high-temperature furnace

Discs

High temperature nozzles for rare earth and magnet

Zirconia Toughened Alumina (ZTA)

Features

- Price Lower than Zirconia
- Performance Higher than Alumina

Applications

- Crucibles
- Cylinder Liner for Slurry Pump
- Ring, Plate, Pipe, Box
- Various Parts
- Friction Disc for Textile Machine

Characteristics of Material

Item	Unit	Value
Mohs Hardness		9
Bending Strength	MPa	455
Fracture Toughness	MPam ^{1/2}	5.29
Max. Operating Temperature	°C	1010

Friction disc

Cylinder liner for slurry pump

Cylinder liner for slurry pump

Various parts

Crucibles

Textile parts

Mullite

Features

- High Mechanical Strength
- Low Thermal Expansion Coefficient
- Good Anti Thermal Shock Property

Applications

- Protecting Pipe for Thermocouple
- Insulating Pipe
- Insulator
- Lining

Characteristics of Material

Item	Unit	Value
Main Composition		$3\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$
Bulk Density	g/cm ³	3.1
Mohs Hardness		6~7
Compressive Strength	MPa	1000
Tensile Strength	MPa	100
Bending Strength	MPa	180
Thermal Expansion Coefficient	$\times 10^{-6}/^\circ\text{C}$	4.0(at 25~300°C)
Thermal Conductivity	W/m.K	3.9~6.1
Dielectric Constant (at 1MHz)		6.5
Volume Resistivity	$\Omega \text{ cm}$	$>10^{13}$

Steatite

Features

- High Mechanical Strength
- Low Dielectric Loss
- Resistance to Acid and Alkali

Applications

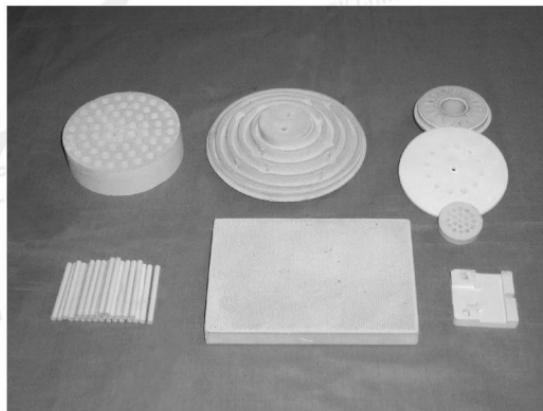
- High Frequency Insulator
- Insulating Parts for Radar and TV

Characteristics of Material

Item	Unit	Value
Main Composition		$\text{MgO} \cdot \text{SiO}_2$
Bulk Density	g/cm ³	2.8~3.1
Mohs Hardness		7.5
Compressive Strength	MPa	580
Tensile Strength	MPa	70
Bending Strength	MPa	125
Thermal Expansion Coefficient	$\times 10^{-6}/^\circ\text{C}$	6.9(at 25~300°C)
Dielectric Constant (at 1MHz)		6.0
Dielectric Loss Angle (at 1 MHz)	$\times 10^{-4}$	6~8
Insulating Strength	kV/mm	20~30
Volume Resistivity	$\Omega \text{ cm}$	$>10^{13}$

Special insulator

Ring, pipe


Cordierite

Features

- Low Thermal Expansion Coefficient
- Low Dielectric Constant

Characteristics of Material

Item	Unit	Value
Main Composition		$2\text{MgO} \cdot 2\text{Al}_2\text{O}_3 \cdot 5\text{SiO}_2$
Bulk Density	g/cm ³	2.2
Mohs Hardness		6.0
Compressive Strength	MPa	275
Tensile Strength	MPa	25
Bending Strength	MPa	65
Thermal Expansion Coefficient	$\times 10^4/\text{C}$	2.2 (at 25~300°C)
Dielectric Constant (at 1MHz)		5.3

Parts of cordierite

Add: Room 1401, B building Times Apartment Chongming Road, Anshanxi Street, Nankai Dist, Tianjin , China.
P.C.: 300192
Http: //www.china-rectifier.com
E-mail: scdz@china-rectifier.com
Tel: 86-22-27474502/27474602/27474603
Fax: 86-22-27474400
President: Yan Jiyng